VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) IV-Semester Advanced Suppl. Examinations, Aug. / Sept-2023 Electronic Circuits

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO	PSO
1.	What is the need for Transistor Biasing?	2	1	1	1	1,2
2.	Define thermal Runaway.	2	1	1	2	1,2
3.	Mention the parameters that effect the fall of gain at low frequency and high frequency regions of RC coupled amplifier.		1	2	1	1,2
4.	Draw the Circuit of Differential Amplifier and Mention its applications.	2	2	2	2	1,2
5.	State the advantages of Negative Feedback Amplifiers.	2	2	3	2	1,2
6.	Derive the expression for closed loop gain of current Shunt feedback Amplifier.	2	3	3	1	1,2
7.	State Barkhausen criteria for sinusoidal oscillators	2	1	4	1	1,2
8.	Draw the equivalent circuit of Crystal Oscillator and justify it.	2	3	4	1	1,2
9.	What is Total Harmonics Distortion in power amplifier?	2	1	5	1	1,2
10.	Define the conversion efficiency of a power amplifier.	2	1	5	1	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$					
11. a)	Derive the expression for Stability factor in a Self Bias circuit.Use proper circuit with BJT.	4	3	1	3	1,2
b)	Design a Self Bias Circuit using BJT for the given specifications. β =50,V _{BE} =0.6V,V _{CC} =22.5Vand R _C =5.6K Ω . The required operating point is V _{CEQ} =12V,I _{CQ} =1.5mA and Stability factor=3.	4	2	1	3	1,2
12. a)	Draw the Circuit of Single stage RC coupled Common Emitter Amplifier and explain the significance of each component.	4	2	2	1	1,2
b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	3	2	2	1,2

:: 2 ::

Code No.: 14466 AS N

13. a)	Draw the Block Diagram of a Feedback Amplifier and explain the function of each Block.	4	2	3	1	1,2
b)	An amplifier having an input resistance $4k\Omega$ has a voltage gain of 200. If a series negative feedback with β =0.01 is introduced, determine the value of input resistance of the feedback amplifier. If the amplifier in its open loop configuration had cut off frequencies f_l = 2kHz and f_h = 500kHz before the feedback path was added, what is the new bandwidth of the circuit with feedback?	4	3	3	3	1,2
14. a)	Draw the circuit diagram of an RC Phase Shift Oscillator using FET and explain its working principle.	4	2	4	2	1,2
b)	Given for a Colpitts Oscillator C1=100pF, C2= 7500pF. The inductance is variable. Determine the range of inductance values if the frequency of Oscillations is to vary from 860KHz to 1180KHz . If the inductance is fixed at $2 \mu \text{H}$ what is the new frequency of Oscillations.	4	3	4	3	1,2
15. a)	Identify the circuit used to eliminate Second Harmonic Distortion and derive its efficiency.	4	2	5	2	1,2
b)	A single tuned amplifier consist of tuned circuits having R=50hm, L=10μH,C=0.1KPF. Determine a) Resonant frequency b) Quality factor of tank circuit c) Band width of amplifier.	4	3	5	2	1,2
16. a)	Mention different types of FET biasing methods and explain any one of them with circuit diagram.	4	3	1	2	1,2
b)	Evaluate the values of i) The input impedance ii) Current gain iii) Voltage gain iv) output impedance of a transistor CE configuration .Assume h-parameters values of BJT are hie =1100 Ω , hre= 10×10^{-4} ; hfe= 50; hoe= 100×10^{-6} . Load resistance and Source Resistances are 1 K Ω each	4	2	2	2	1,2
17.	Answer any two of the following:					
a)	Compare the 4 types of Negative feedback amplifiers in terms of input impedance and output impedance.	4	2	3	2	1,2
b)	Derive the condition for Oscillations of a Hartley Oscillator.	4	3	4	2	1,2
c)	Draw the circuit of Class C Tuned amplifier and explain its working.	4	2	5	1	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
